Metallorganische Verbindungen des Kupfers

VII *. Synthese und Struktur von Alkin–Alkinyl–Kupfer(I)-Komplexen (Alkin = 3,3,6,6-Tetramethyl-1-thia-4-cycloheptin; Alkinyl = C=C-C₆H₅, C=C-^tC₄H₉) **

Falk Olbrich, Ulrich Behrens und Erwin Weiss

Institut für Anorganische und Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg 13 (Deutschland)

(Eingegangen den 6. September 1993)

Abstract

The copper(I) complexes $[CuX(tmtch)]_2$ and $[(CuX)_2(dms)(tmtch)]_n$ (X = Cl, Br; dms = dimethylsulfide; tmtch = 3,3,6,6-tetramethyl-1-thia-cyclohept-4-yne) react with ethynyllithium compounds (LiC=C-C₆H₅, LiC=C-^tC₄H₉) using halide substitution to form the previously unknown alkyne-alkynyl-copper(I)-complexes [CuC=C-C₆H₅(tmtch)]₂ (2) and [(CuC=C-^tC₄H₉)₄(tmtch)₂] (3). Both novel complexes have been characterized by X-ray diffraction studies.

Zusammenfassung

Die Kupfer(I)-Komplexe $[CuX(tmtch)]_2$ und $[(CuX)_2(dms)(tmtch)]_n$ (X = Cl, Br; dms = Dimethylsulfid; tmtch = 3,3,6,6-Tetramethyl-1-thia-4-cycloheptin) reagieren mit Ethinyllithiumverbindungen (LiC=C-C₆H₅, LiC=C-^tC₄H₉) unter Substitution der Halogenide zu den bisher noch unbekannten Alkin–Alkinyl-Kupfer(I)-Komplexen $[CuC=C-C_6H_5(tmtch)]_2$ (2) und $[(CuC=C-^tC_4H_9)_4(tmtch)]_2$ (3). Beide neuen Komplexe wurden durch Röntgenstrukturanalysen charakterisiert.

Key words: Copper; Alkyne; X-ray diffraction; Crystal structure

1. Einleitung

Alkinyl–Kupfer(I)-Verbindungen, CuC=CR, sind in der organischen Chemie von hoher präparativer Bedeutung [2,3]. In reiner solvatfreier Form liegen die Verbindungen oligomer oder polymer vor [2]. Von zwei Substanzen, nämlich von CuC=C-C₆H₅ und von CuC=C-^tC₄H₉ konnten die Strukturen bestimmt werden [4,5]. Hiernach ist CuC=C-C₆H₅ hochpolymer,

Korrespondenzadresse: Prof. Dr. U. Behrens.

* VI. Mitteilung siehe Literaturzitat [1].

** Herrn Prof. Dr. Helmut Werner zum 60. Geburtstag am 19.4.1994 gewidmet.

während $CuC=C^{t}C_{4}H_{9}$ aus Oligomeren mit 24 Kupferatomen besteht. In beiden Oligomeren ist die Alkinylgruppe sowohl "end-on" als auch "side-on" an Kupferatome koordiniert.

Geeignete O-, S-, N- und besonders P-Donatoren sind nun in der Lage die großen Alkinyl-Kupfer-Aggregate zu kleineren Einheiten abzubauen [2]. So ist $[CuC = C - R\{P(C_6H_5)_3\}]_4$ (R = C₆H₅, ¹C₄H₉) tetraedrisch gebaut, wobei die Alkinylgruppen über den Tetraederflächen der Cu-Atome liegen (μ^3 - η^1 -verbrückendes Alkin) [5,6]. Demgegenüber wurden im Komplex $[CuC = C - C_6H_5{P(CH_3)_3}]_4$ $\mu^3 - \eta^2$ -, und $\mu^2 - \eta^1$ verbrückende Alkinyl-Liganden beobachtet [7]. Weitere strukturell kompliziertere Alkinyl-Kupfer(I)-Verbindungen sind z.B. $[Cu_3(C = C - C_6H_5)_2$ -

 $(dppm)_{3}$ [BF₄] [8], [Cu₃(C=C-C₆H₅)(dppm)₃][BF₄]₂ [9], [Cu₃(C=C-^tC₄H₉){SC₆H₄(CH₂N(CH₃)₂)-o}₂]₂ [10] oder [Cu₆{C₆H₄(N(CH₃)₂-o}₄{C=C-C₆H₄(CH₃)-p}₂] [11].

Wir haben nun erstmals ein Alkin (3,3,6,6-Tetramethyl-1-thia-4-cycloheptin (1); Abkürzung: tmtch) als Donor-Ligand für die Oligomeren CuC=C-C₆H₅ und CuC=C-^tC₄H₉ eingesetzt. Das gespannte thiacyclische Alkin 1 hat im Vergleich zu anderen Alkinen eine besonders hohe Affinität zu Cu^I-Ionen [1]. Es konnten mit diesem Liganden die zweikernige Verbindung [CuC=C-C₆H₅(tmtch)]₂ (2) und der vierkernige Komplex [(CuC=C-^tC₄H₉)₄(tmtch)₂] (3) erhalten werden. Von beiden Komplexen wurden Röntgenstrukturanalysen angefertigt.

2. Präparative Ergebnisse

Die Alkin-Kupfer(I)-Komplexe $[CuX(tmtch)]_2$ und $[(CuX)_2(dms)(tmtch)]_n$ [12] (X = Cl, Br; tmtch = 3,3,6,6-Tetramethyl-1-thia-4-cycloheptin; dms = Dimethylsulfid) reagieren mit LiC=C-R (R = C₆H₅, ^tC₄H₉) in Diethylether bei Raumtemperatur zu den

Komplexen $[CuC=C-C_6H_5(tmtch)]_2$ (2) und $[(CuC=C-^{t}C_4H_9)_4(tmtch)_2]$ (3). Mit X = Br werden die besten Ausbeuten erzielt (45-55%). Alle Umsetzungen mit LiC=C-R (R = C_6H_5) lieferten den Komplex 2, während für R = ${}^{t}C_4H_9$ ausschliesslich die vierkernige Verbindung 3 isoliert werden konnte. Reaktionen mit LiC=C-H ergaben stets die hochexplosive Verbindung Cu₂C₂.

Die Infrarotspektren von 2 und 3 zeigen eine deutliche Verschiebung (ca. 200 cm⁻¹) der C=C-Streckschwingung des η^2 -gebundenen cyclischen Alkins zu tieferen Wellenzahlen im Vergleich zum freien Alkin 1 (freies Alkin [13]: ν (C=C) 2200, 2170 cm⁻¹; 2: ν (C=C) 1996, 1973 cm⁻¹; 3: ν (C=C) 2001, 1976 cm⁻¹). Die beobachteten Wellenzahlen der C=C Streckschwingung für die Komplexe 2 und 3 liegen zwischen den zuvor gefundenen Werten für die Komplexe [CuCl(tmtch)]₂ [12] (ν (C=C) 2007, 1981 cm⁻¹) und [CuOC₆H₅(tmtch)]₂ [14] (ν (C=C) 1955 cm⁻¹). Die vollständigen spektroskopischen Daten befinden sich im experimentellen Teil.

Eine vaporimetrische Bestimmung der molaren Masse von Komplex 3 in Chloroform zeigt, daß in diesem Lösungsmittel der Komplex wie im festen Zustand vierkernig vorliegt.

3. Röntgenographische Untersuchungen [15*]

3.1. Bis- $(\mu$ -phenylethinyl)bis(3,3,6,6-tetramethyl-1-thia-4-cycloheptin)-dikupfer(1) (2)

Einkristalle wurden durch Umkristallisation der Verbindung aus heißem *n*-Hexan erhalten.

3.1.1. Kristalldaten

[CuC=C-C₆H₅(C₁₀H₁₆S)]₂; Kristallgröße $0.3 \times 0.5 \times 0.6 \text{ mm}^3$; monoklin, $P2_1/c$, a = 1305.7(4), b = 1054.3(3), c = 1308.4(3) pm, $\beta = 103.43(2)^0$, $V = 1751.9(9) \times 10^6$ pm³, Z = 2, d(ber.) = 1.262 g cm⁻³, $\mu = 1.354 \text{ mm}^{-1}$. Es wurden 3136 symmetrie-

TABELLE 1. Atomkoordinaten $(\times 10^5)$ und äquivalente isotrope Auslenkungsparameter (pm^2) von 2

	x	у	z	U _{eq} ^a
Cu	44957(3)	6516(3)	4452(3)	454(1)
S	24186(12)	37397(15)	16369(15)	1236(8)
C(10)	41116(28)	19782(34)	13142(26)	576(12)
C(11)	33245(26)	13508(34)	9570(26)	555(12)
C(12)	21694(29)	12198(43)	8154(33)	716(15)
C(13)	18502(34)	- 1002(52)	11006(41)	975(21)
C(14)	16347(33)	15420(58)	- 3091(37)	1059(23)
C(15)	18970(37)	21777(49)	16009(44)	1046(23)
C(16)	37176(37)	36183(50)	24244(2)	1033(23)
C(17)	45868(32)	31190(37)	19168(32)	713(15)
C(18)	48738(49)	40740(41)	11723(45)	1066(25)
C(19)	55467(36)	27643(46)	27815(34)	934(20)
C(20)	60307(25)	8768(29)	4589(24)	487(11)
C(21)	67820(26)	15099(32)	7488(26)	547(12)
C(22)	77012(27)	22852(35)	11148(31)	633(14)
C(23)	84374(30)	19602(47)	20185(35)	822(17)
C(24)	93152(35)	26897(62)	23708(50)	1057(25)
C(25)	94607(40)	37222(63)	18473(62)	1165(30)
C(26)	87649(46)	40696(52)	9517(59)	1190(31)
C(27)	78753(37)	33451(45)	5845(43)	947(21)

^a Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ii} Tensors.

unabhängige und signifikante Reflexe $(F > 6\sigma(F), Mo-K\alpha$ -Strahlung, Graphitmonochromator, $\omega/2\Theta$ -Scans, $4.5^{\circ} < 2\Theta < 60.0^{\circ}$) vermessen. Die Lösung des Phasenproblems (Direkte Methoden) und die Strukturverfeinerung erfolgte mit dem Programmsystem SHELXTL PLUS [16]. Alle Nichtwasserstoffatome wurden anisotrop verfeinert (H-Atome in idealisierten Positionen berechnet). Die abschliessenden *R*-Werte betragen R = 4.90%, wR = 5.48% ($w^{-1} = \sigma^2(F) + 0.00025F^2$). In Tabelle 1 sind die Atomparameter von 2 aufgelistet; Tabelle 2 enthält ausgewählte Abstände und Winkel. Figur 1 zeigt eine Zeichnung des Moleküls.

3.2. Tetrakis(μ -tert-butylethinyl)-bis(3,3,6,6-tetramethyl-1-thia-4-cycloheptin)tetrakupfer(I) (3)

Einkristalle wurden ebenfalls durch Umkristallisation der Verbindung aus heißem *n*-Hexan erhalten.

TABELLE 2. Ausgewählte Abstände (pm) und Winkel (⁰) von 2

Cu-C(10)	194.0(4)	S-C(16)	177.3(5)
Cu-C(11)	195.1(4)	C(10)-C(11)	122.0(5)
CuC(20)	201.4(3)	C(20)-C(21)	117.4(5)
Cu-CuA	238.6(1)	C(20)-CuA	202.2(3)
Cu-C(20A)	202.2(3)	C(21)-C(22)	143.9(5)
S-C(15)	177.9(5)		
C(10)-Cu-C(11)	36.6(1)	C(10)-C(11)-C(12)	147.2(4)
C(20)-Cu-C(20A)	107.5(1)	Cu-C(20)-CuA	72.5(1)
C(15)-S-C(16)	104.9(2)	C(20)-C(21)-C(22)	179.4(4)
C(11)-C(10)-C(17)	148.1(4)		

Fig. 1. Molekülstruktur von 2.

3.2.1. Kristalldaten

[(CuC=C-^tC₄H₉)₄(C₁₀H₁₆S)₂]; Kristallgröße 0.6 × 0.7 × 0.8 mm³; monoklin, $P2_1/c$, a = 1226.8(2), b = 2012.9(2), c = 2069.7(3) pm, β 103.86(2)⁰, $V = 4962.2(14) \times 10^6$ pm³, Z = 4, d(ber.) = 1.225 g cm⁻³, $\mu = 1.800$ mm⁻¹, Es wurden 5063 symmetrieunabhängige und signifikante Reflexe ($F > 4\sigma(F)$, Mo-K α -Strahlung, Graphitmonochromator, $\omega/2\Theta$ -Scans, $4.5^0 < 2\Theta < 50.0^0$) vermessen. Lösung und Verfeinerung der Struktur erfolgte wie unter 3.1. beschrieben. Die abschliessenden *R*-Werte betragen R = 5.70%, wR = 6.62% ($w^{-1} = \sigma^2(F) + 0.0007 F^2$).

Die Atome Cu(3) und Cu(4) sind fehlgeordnet und wurden mit jeweils zwei Atomlagen verfeinert (Verhältnis 2/3 zu 1/3). In Tabelle 3 sind die Atomparameter von 3 aufgelistet. In der Tabelle 4 (ausgewählte Abstände und Bindungswinkel) sowie in der Zeichnung der Molekülstruktur (Fig. 2) sind nur die zu zwei Drittel besetzten Cu-Atomlagen angegeben.

Das dimere Molekül 2 besitzt als zentrale Einheit einen völlig ebenen $Cu_2(\mu-C)_2$ -Vierring (kristallographisches Inversionszentrum im Mittelpunkt des Vierrings). Die Kupferatome sind trigonal planar von den C=C-C₆H₅-Liganden und dem Alkin 1 koordiniert (max. Abweichung der C=C-Atome des cyclischen Alkins aus der Cu₂(μ -C)₂-Ebene 2 pm). Zu dieser Ebene stehen die Ebenen der Phenylringe nahezu senkrecht (Winkel zwischen Phenylringebene und Cu₂(μ -C)₂-Ebene: 86⁰). Es wird ein bemerkenswert kurzer Cu ··· Cu-Abstand von 238.6 pm beobachtet. Die Cu- η^2 (C,C)-Bindungslänge (195 pm) liegt im Bereich anderer von uns charakterisierter tmtch-Cu(I)- Komplexe (Cu- η^2 (C,C)-Bindungslänge z.B. von [CuCl(tmtch)]₂ 194 pm [12], [CuOC₆H₅(tmtch)]₂ 193 pm [14] und [CuSC₆H₅(tmtch)]₂ 197 pm [17]). Länger

TABELLE 3. Atomkoordinaten ($\times 10^4$) und äquivalente isotrope Auslenkungsparameter (pm² $\times 10^{-1}$) von 3

	x	У	z	U _{eq} ^a	
Cu(1)	1530(1)	629(1)	1289(1)	52(1)	
Cu(2)	5024(1)	217(1)	3338(1)	57(1)	
Cu(3)	3323(1)	997(1)	2414(1)	61(1) ^b x	
Cu(4)	3269(1)	-384(1)	2099(1)	63(1) ^b x	
S(1)	-1950(2)	1825(1)	522(2)	123(1)	
S(2)	8578(2)	969(1)	4669(1)	111(1)	
C(10)	441(5)	1276(3)	787(3)	54(2)	
C(11)	- 93(5)	792(3)	896(3)	51(2)	
C(12)	- 1219(5)	495(3)	865(3)	62(3)	
C(13)	- 1454(6)	503(4)	1566(3)	88(3)	
C(14)	-1312(6)	-223(3)	596(4)	89(3)	
C(15)	-2058(6)	939(4)	385(4)	91(3)	
C(16)	-883(7)	2043(4)	99(4)	117(4)	
C(17)	366(7)	1966(3)	516(4)	82(3)	
C(18)	1190(7)	2068(4)	63(5)	126(5)	
C(19)	653(8)	2454(4)	1105(5)	125(5)	
C(20)	6612(5)	180(3)	3843(3)	58(2)	
C(21)	6113(5)	560(3)	4135(3)	57(2)	
C(22)	6216(6)	1078(3)	4666(3)	72(3)	
C(23)	5407(7)	964(4)	5101(4)	108(4)	
C(24)	6059(6)	1762(3)	4344(4)	102(4)	
C(25)	7457(7)	1000(4)	5101(4)	104(4)	
C(26)	8571(6)	114(4)	4413(4)	97(4)	
C(27)	7719(5)	-94(3)	3767(3)	71(3)	
C(28)	8005(6)	212(4)	3153(4)	100(4)	
C(29)	7681(7)	-860(3)	3710(4)	108(4)	
C(30)	3633(6)	668(3)	3366(3)	65(3)	
C(31)	2787(6)	992(3)	3353(3)	65(3)	
C(32)	1823(6)	1392(4)	3464(4)	78(3)	
C(33)	794(9)	1311(7)	2891(6)	234(9)	
C(34)	1529(11)	1157(6)	4085(6)	214(9)	
C(35)	2114(9)	2106(4)	3531(7)	199(9)	
C(40)	1594(5)	- 226(3)	1734(3)	58(2)	
C(41)	1612(5)	- 729(3)	2071(3)	64(3)	
C(42)	1373(7)	- 1337(4)	2421(4)	83(3)	
C(43)	288(11)	- 1314(7)	2527(10)	417(20)	
C(44)	1462(12)	- 1937(5)	2029(6)	236(10)	
C(45)	2215(11)	- 1454(5)	3035(5)	216(8)	
C(50)	2968(6)	1094(3)	1410(3)	64(3)	
C(51)	3827(5)	1413(3)	1540(3)	66(3)	
C(52)	4810(6)	1864(4)	1583(4)	88(4)	
C(53)	5813(9)	1616(6)	2058(8)	287(11)	
C(54)	5040(11)	1901(7)	922(7)	255(11)	
C(55)	4541(9)	2533(5)	1774(9)	283(14)	
C(60)	4947(5)	- 314(4)	2538(3)	63(2)	
C(61)	4945(5)	- 588(3)	2014(3)	63(3)	
C(62)	5157(6)	- 934(3)	1418(3)	69(3)	
C(63)	5082(7)	- 439(4)	850(4)	106(4)	
C(64)	6376(7)	- 1229(4)	1616(4)	120(5)	
C(65)	4315(7)	- 1494(4)	1199(4)	115(4)	
Cu(3X)	2508(2)	163(1)	2655(1)	73(1) ^b x	
Cu(4X)	4076(2)	395(1)	1883(1)	70(1) ^b x	

^a Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors. ^b x Atomlagen aus dem Fehlordnungsmodell.

TABELLE 4. Ausgewählte Abstände (pm) und Winkel (⁰) von 3				
Cu(1)-Cu(3)	288.9(1)	Cu(1)-C(10)	197.5(6)	
Cu(1)-C(11)	199.0(6)	Cu(1)-C(40)	194.6(6)	
Cu(1)-C(50)	195.9(7)	Cu(2)-C(20)	198.0(6)	
Cu(2)-C(21)	198.1(6)	Cu(2)-C(30)	194.6(7)	
Cu(2)-C(60)	195.5(7)	Cu(3)–Cu(2)	292.7(1)	
Cu(3)-Cu(4)	285.1(2)	Cu(3)-C(30)	202.6(6)	
Cu(3)-C(31)	219.5(7)	Cu(3)-C(50)	202.7(7)	
Cu(3)-C(51)	221.1(7)	Cu(4) - C(40)	203.7(6)	
Cu(4)C(41)	213.5(6)	Cu(4)C(60)	204.7(6)	
Cu(4)-C(61)	214.6(6)	S(1)-C(15)	180.6(8)	
S(1)-C(16)	179.4(10)	S(2)-C(25)	181.2(9)	
S(2)-C(26)	180.0(8)	C(10)-C(11)	122.5(9)	
C(20)-C(21)	122.6(9)	C(30)-C(31)	122.1(10)	
C(40)-C(41)	122.5(9)	C(50)-C(51)	120.8(9)	
C(60)-C(61)	121.6(10)			
C(10)-Cu(1)-C(11)	36.0(3)	C(50)-Cu(1)-C(40)-	115.4(2)	
C(20)-Cu(2)-C(21)	36.1(3)	C(30)-Cu(2)-C(60)	114.5(2)	
C(30)-Cu(3)-C(31)	33.3(3)	C(30)-Cu(3)-C(50)	166.5(3)	
C(31)-Cu(3)-C(50)	150.6(3)	C(30)-Cu(3)-C(51)	153.4(3)	
C(31)-Cu(3)-C(51)	158.0(2)	C(50)-Cu(3)-C(51)	32.7(2)	
C(40)-Cu(4)-C(41)	34.0(2)	C(40)-Cu(4)-C(60)	166.5(3)	
C(41)-Cu(4)-C(60)	152.1(3)	C(40)-Cu(4)-C(61)	154.3(3)	
C(41)-Cu(4)-C(61)	149.3(2)	C(60)-Cu(4)-C(61)	33.6(3)	
C(15)-S(1)-C(16)	101.5(4)	C(25)-S(2)-C(26)	103.1(4)	
C(11)-C(10)-C(17)	145.3(6)	C(10)-C(11)-C(12)	147.2(6)	
C(21)-C(20)-C(27)	148.0(6)	C(20)-C(21)-C(22)	146.3(6)	
Cu(3)-C(30)-Cu(2)	94.9(3)	C(30)-C(31)-C(32)	170.1(7)	
Cu(1)-C(40)-Cu(4)	103.6(3)	Cu(1)-C(40)-C(41)	173.2(6)	
C(40)-C(41)-C(42)	167.9(6)	Cu(1)-C(50)-Cu(3)	92.9(3)	
Cu(1)-C(50)-C(51)	173.3(6)	C(50)-C(51)-C(52)	169.8(7)	
Cu(2)-C(60)-Cu(4)	104.6(3)	Cu(2)-C(60)-C(61)	173.3(6)	
C(60)-C(61)-C(62)	170.1(6)			

ist dagegen die Cu-C(Ethinyl)-Bindung (202 pm). Ähnliche Abstände wurden auch beim trigonal-planar koordinierten Cu-Atom im Komplex [CuC \equiv C-C₆H₅{P(CH₃)₃]₄ (196-207 pm) [7] oder im Komplexe [Cu₃(C \equiv C-C₆H₅)(dppm)₃][BF₄]₂ (196-208 pm) [9]

Fig. 2. Molekülstruktur von 3.

beobachtet. Deutlich aufgeweitet sind hingegen die Cu-C(Ethinyl)-Abstände für Komplexe mit tetraedrisch umgebenen Cu-Atomen wie z.B. in den Komplexen [CuC=C-C₆H₅{P(C₆H₅)₃}]₄ (219 pm) [6], [CuC=C-C₆H₅{P(C₆H₅)₂py]₄ (205-234 pm) [18] oder [Cu₃(C=C-C₆H₅)₂(dppm)₃][BF₄] (206-234 pm) [8].

Die Verbindung 3 kann als Kupfer-bis(tert-butylethinyl)cuprat tmtch formuliert werden. Zwei komplexe Anionen ([Cu(C=C-^tC₄H₉)₂(tmtch)]⁻) werden durch zwei Cu¹-Ionen verbrückt (siehe Fig. 2). Es resultiert ein fast planarer Cu₄-Ring (4 pm Abweichung der Cu-Atome von der besten Ebene durch den Cu₄-Ring). Die Atome Cu(1) und Cu(2) sind trigonal-planar von zwei C_a-Atomen (C_a=C_b-^tC₄H₉) und dem Alkin 1 koordiniert. Der Cu-C_a-Abstand für die Atome Cu(1) und Cu(2) beträgt 195 pm (Mittelwert), der Winkel C_a-Cu-C_a 115⁰. Etwas länger ist die Bindung der Cu-Atome zu den C-Atomen des cyclischen Alkins (198 pm).

Im Unterschied hierzu werden die Atome Cu(3) und Cu(4) unsymmetrisch η^2 von jeweils zwei $C_{\alpha} \equiv C_{\beta}$ ${}^{t}C_{4}H_{9}$ -Liganden koordiniert. Der Cu-C_a-Abstand für Cu(3/4) ist um 8 pm länger als für die Atome Cu(1)und Cu(2) (Bindungslängen Cu-C_{α}: Cu(1) und Cu(2) 195 pm, Cu(3) und Cu(4) 203 pm). Der Winkel C_{α} - $Cu-C_{\alpha}$ ist für die Atome Cu(3) und Cu(4) annähernd linear (167°). Eine etwas geringere Wechselwirkung von Cu(3/4) tritt zu den C_{β}-Atomen auf. Dieser Abstand ist deutlich aufgeweitet (Cu(3)-C₆ 220 pm und $Cu(4)-C_{\beta}$ 217 pm). Eine für die Atome Cu(3) und Cu(4) vergleichbare Koordination von Cu-Atomen an $C_{\alpha} \equiv C_{\beta}^{-1}C_{4}H_{9}$ -Liganden wurde im Komplex [Mn₂Cu- $(C \equiv C^{-1}C_4H_9)_2(CO)_6(dppe)_2 [PF_6]$ [19] beobachtet. Hier liegt eine symmetrische η^2 -(C,C)-Koordination der $C_{\alpha} = C_{\beta}^{-t} C_4 H_9$ -Liganden an die Cu-Atome vor (Cu- η^2 (C,C)-Abstand 208 pm). Deutlich längere Cu- C_{α} -Abstände als in Verbindung 3 werden in den Komplexen $[CuC=C-{}^{t}C_{4}H_{9}\{P(C_{6}H_{5})_{3}\}]_{4}$ (215 pm) [5], $[N(C_2H_5)_4][W_2Cu(C=C-{}^{t}C_4H_9)_2(CO)_4\{C_2B_9H_9 (CH_3)_2$] (205–210 pm) [20], [Cu₃(C=C-^tC₄H₉)Cl $(dppm)_{3}$ [PF₆] (211-221 pm) [21] oder [Cu₃(C=C-C₄- H_{9} {SC₆ H_{4} CH₂N(CH₃)₂)-o}₂]₂ (213 pm) [10] beobachtet.

4. Experimenteller Teil

Alle Arbeiten wurden unter Argonschutz durchgeführt. Die Lösungsmittel waren getrocknet und Argesättigt. Die Ausgangsverbindungen $[CuX(tmtch)]_2$ und $[(CuX)_2(dms)(tmtch)]_n$ (X = Cl, Br) wurden, wie zuvor von uns beschrieben, synthetisiert [12]. Phenylethinyllithium wurde nach [22] dargestellt. IR-Spektren: Perkin Elmer FT-IR 1720; ¹H-NMR: Bruker WP-80; Röntgen: Syntex P2₁, Hilger und Watts Y290. Die Kristalle wurden für die Strukturbestimmungen auf ausgezogene Glaskapillaren aufgeklebt.

4.1. Synthese von $[CuC \equiv C - C_6 H_5(tmtch)]_2$ (2)

Zu einer farblosen Suspension aus 0.80 g (2.6 mmol) [CuBr(tmtch)] in 180 mL Diethylether wird bei Raumtemperatur eine Lösung aus 0.33 g (3.1 mmol) $LiC=C-C_6H_5$ in 20 mL Diethylether gegeben. Man rührt 3 Std, filtriert, engt auf 150 mL ein und kühlt die Lösung auf -30° C ab. Das Produkt fällt als gelber feinkristalliner Niederschlag aus. Ausbeute: 0.45 g (53%). Eigenschaften: Schmp. 158°C unter Zersetzung, gut löslich in Tetrahydrofuran, Diethylether und Benzol, wenig in n-Hexan. Elementaranalyse: Gef.: C, 64.5; H, 6.3. C₃₆H₄₂Cu₂S₂ (665.9) ber.: C, 64.9; H, 6.4%. IR (KBr): 3072, 3055, 3025; 2962, 2934, 2892, 2864; 2064, 1996, 1973; 1484, 1468, 1441, 1360, 1273, 1258, 1248; 953, 841, 761, 692, 678, 608 cm⁻¹. ¹H-NMR (CDCl₃): 7.47-6.96 (m, C₆H₅); 2.55 (s, CH₂); 1.24 (s, CH₂) ppm.

4.2. Synthese von [($CuC \equiv C^{-t}C_4H_9$)₄(tmtch)₂] (3)

Zu einer farblosen Suspension aus 0.50 g (1.0 mmol) [(CuBr)₂(dms)(tmtch)] in 30 mL Diethylether werden bei Raumtemperatur 11.5 mL einer frisch bereiteten 0.2 molaren Lösung von LiC=C-^tC₄H₉ in Diethylether (aus HC=C $-^{t}C_{4}H_{9}$ und *n*-Butyllithium) gegeben. Man rührt 20 Std, destilliert das Lösungsmittel ab und extrahiert mit n-Hexan 3 Std bei Raumtemperatur. Die Lösung wird erneut filtriert und auf -55° C abgekühlt. Das Produkt fällt als hellgelbe feinkristalline Substanz aus. Ausbeute: 195 mg (44%). Eigenschaften: Schmp. 174°C unter Zersetzung, gut löslich in Tetrahydrofuran, Diethylether, Benzol oder Chloroform. Elementaranalyse: Gef.: C, 57.0; H, 7.5. C₄₄H₆₈Cu₄S₄ (915.3; gef. 795 osmometrisch in Chloroform) ber.: C, 57.7; H, 7.5%. IR (KBr): 2964, 2939, 2923, 2895, 2863; 2001, 1976, 1910; 1471, 1454, 1359, 1238, 1204, 847, 684, 622, 560, 501 cm⁻¹. ¹H-NMR (CDCl₃): 2.79 (s, CH₂); 1.31 $(s, {}^{t}C_{4}H_{9}); 1.25 (s, CH_{3}) ppm.$

Dank

Wir danken Frau C. Topf, Frau Dipl. Min. B. Hagen und Herrn Priv. Doz. Dr. J. Kopf für die Durchführung der röntgenographischen Messungen. Dem Fond der Chemischen Industrie und der Deutschen Forschungsgemeinschaft danken wir für die finanzielle Unterstützung dieser Arbeit.

Literatur und Bemerkungen

F. Olbrich, U. Behrens, G. Schmidt und E. Weiss, 463 (1993) 249.
J. Organomet. Chem., zur Publikation eingereicht.

- 2 Gmelin Handbook of Inorganic Chemistry, 8th Edn., Cu, Organocopper Compounds, Part 3 and 4, Springer-Verlag, Berlin, 1986 and 1987.
- 3 G.M. Posner, An Introduction to Synthesis Using Organocopper Reagents, Wiley, New York, 1980.
- 4 P.W.R. Corfield und H.M.M. Shearer, Abstr. Am. Cryst. Assoc. Meeting, Bozeman, Mont., USA, 1964, S. 96; G.E. Coates, M.L.H. Green und K. Wade, Organometallic Compounds Vol. 2: The Transition Elements, 3rd Edn., Methuen, London, 1968, S. 271.
- 5 F. Olbrich, J. Kopf und E. Weiss, Angew. Chem., 105 (1993) 1136; Angew. Chem. Int. Ed. Engl., 32 (1993) 1077.
- 6 L. Naldini, F. Demartin, M. Manassero, M. Sansoni, G. Rassu und A. Zoroddu, J. Organomet. Chem., 279 (1985) C42.
- 7 P.W.R. Corfield und H.M.M. Shearer, Acta Crystallogr., 21 (1966) 957.
- 8 J. Diez, M.P. Gamasa, J. Gimeno, A. Aguirre und S. Garcia-Granda, Organometallics, 10 (1991) 380.
- 9 M.P. Gamasa, J. Gimeno, E. Lastra, A. Aguirre und S. Garcia-Granda, J. Organomet. Chem., 378 (1989) C11; J. Diez, M.P. Gamasa, J. Gimeno, E. Lastra, A. Aguirre und S. Garcia-Granada, Organometallics, 12 (1993) 2213.
- 10 D.M. Knotter, A.L. Spek und G. van Koten, J. Chem. Soc., Chem. Commun., (1989) 1738.
- 11 R.W.M. ten Hoedt, J.G. Noltes, G. van Koten und A.L. Spek, J. Chem. Soc., Dalton Trans., (1978) 1800.
- 12 F. Olbrich, G. Schmidt, U. Behrens und E. Weiss, J. Organomet. Chem., 418 (1991) 421.

- 13 A. Krebs und H. Kimling, Tetrahetron Lett., (1970) 761; Liebigs Ann. Chem., (1974) 2074.
- 14 F. Olbrich, U. Behrens, G. Gröger und E. Weiss, J. Organomet. Chem., 448 (1993) C10.
- 15 Die jeweils vollständigen Datensätze wurden beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich technische Information mbH, D-76344 Eggenstein-Leopoldshafen 2, unter der Nr. CSD-57677 hinterlegt und können von dort unter Angabe der Hinterlegungsnummer, der Autoren und des Zeitschriftenzitates angefordert werden.
- 16 G.M. Sheldrick, SHELTXTL PLUS Release 4.21/V, Siemens Analytical X-ray Instruments Inc., 1990.
- 17 F. Olbrich, J. Kopf, E. Weiss, A. Krebs und S. Müller, Acta Crystallogr., Sect. C 46 (1990) 1650.
- 18 M.P. Gamasa, J. Gimeno, E. Lastra und X. Solans, J. Organomet. Chem., 346 (1988) 277.
- 19 G.A. Carriedo, D. Miguel, V. Riera und X. Solans, J. Chem. Soc., Dalton Trans., (1987) 2867.
- 20 J.-L. Cabioch, S.J. Dossett, I.J. Hart, M.U. Pilotti und F.G.A. Stone, J. Chem. Soc., Dalton Trans., (1991) 519.
- 21 V.W.-W. Yam, W.-K. Lee und T.-F. Lai, Organometallics, 12 (1993) 2383.
- 22 G. Fraenkel und P. Pramanik, J. Chem. Soc., Chem. Commun., (1983) 1527.